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1

Foliations

Intuitively speaking, a foliation of a manifold M is a decomposition of
M into immersed submanifolds, the leaves of the foliation. These leaves
are required to be of the same dimension, and to fit together nicely.

Such foliations of manifolds occur naturally in various geometric con-
texts, for example as solutions of differential equations and integrable
systems, and in symplectic geometry. In fact, the concept of a foliation
first appeared explicitly in the work of Ehresmann and Reeb, motivated
by the question of existence of completely integrable vector fields on
three-dimensional manifolds. The theory of foliations has now become
a rich and exciting geometric subject by itself, as illustrated be the fa-
mous results of Reeb (1952), Haefliger (1956), Novikov (1964), Thurston
(1974), Molino (1988), Connes (1994) and many others.

We start this book by describing various equivalent ways of defining
foliations. A foliation on a manifold M can be given by a suitable
foliation atlas on M , by an integrable subbundle of the tangent bundle
ofM , or by a locally trivial differential ideal. The equivalence of all these
descriptions is a consequence of the Frobenius integrability theorem. We
will give several elementary examples of foliations. The simplest example
of a foliation on a manifold M is probably the one given by the level sets
of a submersion M → N . In general, a foliation on M is a decomposition
of M into leaves which is locally given by the fibres of a submersion.

In this chapter we also discuss some first properties of foliations, for
instance the property of being orientable or transversely orientable. We
show that a transversely orientable foliation of codimension 1 on a mani-
fold M is given by the kernel of a differential 1-form on M , and that this
form gives rise to the so-called Godbillon–Vey class. This is a class of
degree 3 in the de Rham cohomology of M , which depends only on the
foliation and not on the choice of the specific 1-form. Furthermore, we
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1.1 Definition and first examples 5

discuss here several basic methods for constructing foliations. These in-
clude the product and pull-back of foliations, the formation of foliations
on quotient manifolds, the construction of foliations by ‘suspending’ a
diffeomorphism or a group of diffeomorphisms, and foliations associated
to actions of Lie groups.

1.1 Definition and first examples

Let M be a smooth manifold of dimension n. A foliation atlas of codi-
mension q of M (where 0 ≤ q ≤ n) is an atlas

(ϕi: Ui −→ R
n = R

n−q × R
q)i∈I

of M for which the change-of-charts diffeomorphisms ϕij are locally of
the form

ϕij(x, y) = (gij(x, y), hij(y))

with respect to the decomposition R
n = R

n−q × R
q. The charts of a

foliation atlas are called the foliation charts. Thus each Ui is divided
into plaques, which are the connected components of the submanifolds
ϕ−1
i (Rn−q × {y}), y ∈ R

q, and the change-of-charts diffeomorphisms
preserve this division (Figure 1.1). The plaques globally amalgamate

Fig. 1.1. Two foliation charts

into leaves, which are smooth manifolds of dimension n − q injectively
immersed into M . In other words, two points x, y ∈ M lie on the same
leaf if there exist a sequence of foliation charts U1, . . . , Uk and a sequence
of points x = p0, p1, . . . , pk = y such that pj−1 and pj lie on the same
plaque in Uj , for any 1 ≤ j ≤ k.

A foliation of codimension q of M is a maximal foliation atlas of M
of codimension q. Each foliation atlas determines a foliation, since it is
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included in a unique maximal foliation atlas. Two foliation atlases define
the same foliation of M precisely if they induce the same partition of
M into leaves. A (smooth) foliated manifold is a pair (M,F), where
M is a smooth manifold and F a foliation of M . The space of leaves
M/F of a foliated manifold (M,F) is the quotient space of M , obtained
by identifying two points of M if they lie on the same leaf of F . The
dimension of F is n − q. A (smooth) map between foliated manifolds
f : (M,F) → (M ′,F ′) is a (smooth) map f : M → N which preserves
the foliation structure, i.e. which maps leaves of F into the leaves of F ′.

This is the first definition of a foliation. Instead of smooth foliations
one can of course consider C r-foliations, for any r ∈ {0, 1, . . . ,∞}, or
(real) analytic foliations. Standard references are Bott (1972), Hector–
Hirsch (1981, 1983), Camacho–Neto (1985), Molino (1988) and Tondeur
(1988). In the next section we will give several equivalent definitions:
in terms of a Haefliger cocycle, in terms of an integrable subbundle of
T (M), and in terms of a differential ideal in Ω(M). But first we give
some examples.

Examples 1.1 (1) The space R
n admits the trivial foliation of codimen-

sion q, for which the atlas consists of only one chart id: R
n → R

n−q×R
q.

Of course, any linear bijection A: R
n → R

n−q × R
q determines another

one whose leaves are the affine subspaces A−1(Rn−q × {y}).
(2) Any submersion f : M → N defines a foliation F(f) of M whose

leaves are the connected components of the fibres of f . The codimension
of F(f) is equal to the dimension of N . An atlas representing F(f) is
derived from the canonical local form for the submersion f . Foliations
associated to the submersions are also called simple foliations. The foli-
ations associated to submersions with connected fibres are called strictly
simple. A simple foliation is strictly simple precisely when its space of
leaves is Hausdorff.

(3) (Kronecker foliation of the torus) Let a be an irrational real num-
ber, and consider the submersion s: R

2 → R given by s(x, y) = x − ay.
By (2) we have the foliation F(s) of R

n. Let f: R
2 → T 2 = S1 × S1 be

the standard covering projection of the torus, i.e. f(x, y) = (e2πix, e2πiy).
The foliation F(s) induces a foliation F of T 2: if ϕ is a foliation chart
for F(s) such that f |domϕ is injective, then ϕ ◦(f |domϕ)−1 is a foliation
chart for F . Any leaf of F is diffeomorphic to R, and is dense in T 2

(Figure 1.2).
(4) (Foliation of the Möbius band) Let f : R

2 → M be the stan-
dard covering projection of the (open) Möbius band: f(x, y) = f(x′, y′)
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Fig. 1.2. Kronecker foliation of the torus

precisely if x′ − x ∈ Z and y′ = (−1)x
′−xy. The trivial foliation of

codimension 1 of R
2 induces a foliation F of M , in the same way as in

(3). All the leaves of F are diffeomorphic to S1, and they are wrapping
around M twice, except for the ‘middle’ one: this one goes around only
once (Figure 1.3).

Fig. 1.3. Foliation of the Möbius band

(5) (The Reeb foliation of the solid torus and of S3) One can also define
the notion of a foliation of a manifold with boundary in the obvious way;
however, one usually assumes that the leaves of such a foliation behave
well near the boundary, by requiring either that they are transversal to
the boundary, or that the connected components of the boundary are
leaves. An example of the last sort is the Reeb foliation of the solid
torus, which is given as follows.

Consider the unit disk D = {z | z ∈ C, |z| ≤ 1 }, and define a submer-
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sion f: Int(D) × R → R by

f(z, x) = e
1

1−|z|2 − x .

So we have the foliation F(f) of Int(D) × R, which can be extended to
a foliation of the cylinder D × R by adding one new leaf: the boundary
S1 × R. Now D × R is a covering space of the solid torus X = D × S1

in the canonical way, and the foliation of D × R induces a foliation of
the solid torus. We will denote this foliation by R. The boundary torus
of this solid torus is a leaf of R. Any other leaf of R is diffeomorphic to
R

2, and has the boundary leaf as its set of adherence points in X. The
Reeb foliation of X is any foliation F of X of codimension 1 for which
there exists a homeomorphism of X which maps the leaves of F onto
the leaves of R (Figure 1.4).

Fig. 1.4. The Reeb foliation of the solid torus

The three-dimensional sphere S3 can be decomposed into two solid
tori glued together along their boundaries, i.e.

S3 ∼= X ∪∂X X .

Since ∂X is a leaf of the Reeb foliation of X, we can glue the Reeb
foliations of both copies of X along ∂X as well. This can be done so
that the obtained foliation of S3 is smooth. This foliation has a unique
compact leaf and is called the Reeb foliation of S3.

Exercise 1.2 Describe in each of these examples explicitly the space
of leaves of the foliation. (You will see that this space often has a very
poor structure. Much of foliation theory is concerned with the study of
‘better models’ for the leaf space.)
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1.2 Alternative definitions of foliations

A foliation F of a manifold M can be equivalently described in the
following ways (here n is the dimension of M and q the codimension of
F).

(i) By a foliation atlas (ϕi : Ui → R
n−q × R

q) of M for which
the change-of-charts diffeomorphisms ϕij are globally of the form
ϕij(x, y) = (gij(x, y), hij(y)) with respect to the decomposition
R
n = R

n−q × R
q.

(ii) By an open cover (Ui) of M with submersions si: Ui → R
q such

that there are diffeomorphisms (necessarily unique)

γij: sj(Ui ∩ Uj) −→ si(Ui ∩ Uj)
with γij ◦ sj |Ui∩Uj

= si|Ui∩Uj
. (The diffeomorphisms γij satisfy

the cocycle condition γij ◦ γjk = γik. This cocycle is called the
Haefliger cocycle representing F .)

(iii) By an integrable subbundle E of T (M) of rank n − q. (Here
integrable (or involutive) means that E is closed under the Lie
bracket, i.e. if X,Y ∈ X(M) are sections of E, then the vector
field [X,Y ] is also a section of E.)

(iv) By a locally trivial differential (graded) ideal J =
⊕n

k=1 J k of
rank q in the differential graded algebra Ω(M). (An ideal J is
locally trivial of rank q if any point of M has an open neigh-
bourhood U such that J |U is the ideal in Ω(M)|U generated
by q linearly independent 1-forms. An ideal J is differential if
dJ ⊂ J .)

Before we go into details of why these descriptions of the concept of
foliation are equivalent, we should point out that the bundle E of (iii)
consists of tangent vectors to M which are tangent to the leaves, while
a differential k-form is in the ideal J of (iv) if it vanishes on any k-tuple
of vectors which are all tangent to the leaves.

Ad (i): Any foliation atlas (ϕi: Ui → R
n−q×R

q) of F has a refinement
which satisfies the condition in (i). To see this, we may first assume that
(Ui) is a locally finite cover of M . Next, we may find a locally finite
refinement (Vk) of (Ui) such that Vk ∪ Vl is contained in some Ui for
any non-disjoint Vk and Vl. As any Vk is contained in a Uik , we may
take ψk = ϕik |Vk

. Further we may choose each Vk so small that for any
Uj ⊃ Vk, the change-of-charts diffeomorphism ϕj ◦ψ−1

k is globally of the
form (gjk(x, y), hjk(y)), and that hjk is an embedding. This refinement
(ψk) of (ϕi) is a foliation atlas of M which satisfies the condition in (i).
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Ad (ii): If (Ui, si, γij) is a Haefliger cocycle on M , choose an atlas
(ϕk: Vk → R

n) so that each Vk is a subset of an Uik and ϕk renders sik
in the normal form for a submersion: it is surjective, and there exists a
diffeomorphism ψk: sik(Vk) → R

q such that ψk ◦ sik = pr2 ◦ϕk. This is
a foliation atlas of the form in (i): if (x, y) ∈ ϕk(Vk ∩ Vl) ⊂ R

n−q × R
q,

we have

(pr2 ◦ϕl ◦ϕ−1
k )(x, y) = (ψl ◦ sil ◦ϕ−1

k )(x, y)

= (ψl ◦ γilik ◦ sik ◦ϕ−1
k )(x, y)

= (ψl ◦ γilik ◦ψk)(y) .
Conversely, if (ϕi: Ui → R

n−q × R
q) is a foliation atlas of the form in

(i), take si = pr2 ◦ϕi and γij = hij . This gives a Haefliger cocycle on
M which represents the same foliation.

Ad (iii): Let us assume that the foliation is given by a foliation atlas
(ϕi: Ui → R

n−q × R
q). Define a subbundle E of T (M) locally over Ui

by

E|Ui
= Ker(d(pr2 ◦ϕi)) ,

i.e. by the kernel of the R
q-valued 1-form α = d(pr2 ◦ϕi). For any

such a 1-form and any vector fields X, Y on Ui we have 2dα(X,Y ) =
X(α(Y )) − Y (α(X)) − α([X,Y ]). Since our α is closed, it follows that

α([X,Y ]) = X(α(Y )) − Y (α(X)) .

Using this it is clear that E is an integrable subbundle of T (M) of
codimension q.

The bundle E is uniquely determined by the foliation F : a tangent
vector ξ ∈ Tx(M) is in E precisely if ξ is tangent to the leaf of L through
x. The bundle E is called the tangent bundle of F , and is often denoted
by T (F). A section of T (F) is called a vector field tangent to F . The
Lie algebra Γ(T (F)) of sections of T (F) will also be denoted by X(F).

Conversely, an integrable subbundle E of codimension q of T (M) can
be locally integrated (Frobenius theorem, see Appendix of Camacho–
Neto (1985)): for any point x ∈ M there exist an open neighbourhood
U ⊂ M and a diffeomorphism ϕ : U → R

n−q × R
q such that E|U =

Ker(d(pr2 ◦ϕ)). By using these kinds of diffeomorphisms as foliation
charts, one obtains a foliation atlas of the foliation.

Ad (iv): For any subbundle E of T (M), define the (graded) ideal
J =

⊕n
k=1 J k in Ω(M) as follows: for ω ∈ Ωk(M),

ω ∈ J k if and only if
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ω(X1, . . . , Xk) = 0 for any sections X1, . . . , Xk of E.

Note that J is locally trivial of rank q, i.e. it is locally generated
by q linearly independent 1-forms: Choose a local frame X1, . . . , Xn of
T (M)|U such that X1, . . . , Xn−q form a frame of E|U . There is the dual
frame of differential 1-forms ω1, . . . , ωn of T (M)∗|U , and the linearly
independent 1-forms ωn−q+1, . . . , ωn clearly generate the ideal J . Con-
versely, any locally trivial ideal J of rank q determines a subbundle E
of T (M) of rank n− q, by the formula above (for k = 1).

We claim that under this correspondence,

J is differential if and only if E is integrable.

In fact, this is immediate from the definition of the exterior derivative:

dω(X0, . . . , Xk) =
1

k + 1

∑
0≤i≤k

(−1)iXi(ω(X0, . . . , X̂i, . . . , Xk))

+
1

k + 1

∑
0≤j<l≤k

(−1)j+lω([Xj ,Xl],X0, . . . , X̂j , . . . , X̂l, . . . , Xk) .

Remarks. (1) Let J be a locally trivial ideal of rank q in Ω(M). If J
is differential and locally (over U) generated by ω1, . . . , ωq, then

dωi =
q∑
j=1

αij ∧ ωj

for some αij ∈ Ω1(M)|U . In particular,

dωi ∧ ω1 ∧ · · · ∧ ωq = 0 .

Conversely, if we have an open cover (Ul) of M such that for any l the
restriction J |Ul

is generated by linearly independent 1-forms ωl1, . . . , ω
l
q

satisfying

dωli ∧ ωl1 ∧ · · · ∧ ωlq = 0

for any i, then J is differentiable. Indeed, this implies that

dωli =
q∑
j=1

αlij ∧ ωlj

for some αlij ∈ Ω1(M)|Ul
; to see this, one should locally complete

ωl1, . . . , ω
l
q to a frame and compute αlij locally, and finally obtain αlij

on Ul using partition of unity (exercise: fill in the details).
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(2) A one-dimensional subbundle E of T (M) (i.e. a line field) is clearly
integrable, hence any line field on M defines a foliation of M of codi-
mension n− 1.

(3) If ω is a nowhere vanishing 1-form on M , it defines a foliation of
codimension 1 of M precisely if it is integrable, i.e. if

dω ∧ ω = 0 .

Note that if dimM = 2 then any 1-form ω on M is integrable.
In particular, any closed 1-form on M is integrable. For example, if

ω = df for a smooth map f : M → R without critical points, this gives
exactly the foliation given by the submersion f .

Note that if H1
dR(M) = 0 (e.g. if π1(M) is finite) then any closed 1-

form ω on M is exact: ω = df . If ω is nowhere vanishing, the function f
has no critical points. Hence the foliation given by ω is the foliation given
by the submersion f . For example, the Reeb foliation on S3, which is
clearly not given by a submersion, is hence not given by a closed 1-form.

In general, the integrability condition dω ∧ ω = 0 for a nowhere van-
ishing 1-form ω implies that locally ω = gdf for a submersion f which
locally defines the foliation.

(4) Let (M,F) and (M ′,F ′) be foliated manifolds. Then a (smooth)
map f: M → M ′ preserves the foliation structure (hence it is a map of
foliated manifolds) if and only if df(T (F)) ⊂ T (F ′).

Let (M,F) be a foliated manifold and T (F) the corresponding tangent
bundle of F . We say that F is orientable if the tangent bundle T (F)
is orientable, and that F is transversely orientable if its normal bundle
N(F) = T (M)/T (F) is orientable. An orientation of F is an orientation
of T (F), and a transverse orientation of F is an orientation of N(F).

Exercises 1.3 (1) Show that a foliation F is transversely orientable if
and only if it can be represented by a Haefliger cocycle (Ui, si, γij) with
the property that

det(dγij)y > 0

for any y ∈ sj(Ui ∩ Uj).
(2) Show that a foliation of codimension 1 is given by a nowhere

vanishing integrable 1-form (or a nowhere vanishing vector field) if and
only if it is transversely orientable.

(3) Determine which of the foliations in Examples 1.1 are orientable
and which are transversely orientable.



1.2 Alternative definitions of foliations 13

(4) Find an example of a foliation of dimension 1 of the Klein bottle,
which is neither orientable nor transversely orientable.

Let F be a transversely orientable foliation of codimension 1 on M .
Hence F is given by an integrable nowhere vanishing differential 1-form
ω on M . The form ω is determined uniquely up to the multiplication
by a nowhere vanishing smooth function on M .

We have mentioned above that the condition dω ∧ ω = 0 implies that
dω = α ∧ ω. The form α is not uniquely determined, but we shall see
that

(i) dα ∧ ω = 0 and d(α ∧ dα) = 0,
(ii) the class gv(ω) = [α∧dα] ∈ H3

dR(M) is independent of the choice
of α, and

(iii) gv(ω) = gv(hω) for any nowhere vanishing smooth function h on
M .

It follows the class gv(ω) depends only on the foliation F and not on
the particular choice of ω or α. This class is called the Godbillon–Vey
class of the foliation F , and is denoted by

gv(F) ∈ H3
dR(M) .

Let us now prove the properties (i), (ii) and (iii).
(i) Since dω = α ∧ ω, we have

0 = ddω

= d(α ∧ ω)

= dα ∧ ω − α ∧ dω
= dα ∧ ω − α ∧ α ∧ ω
= dα ∧ ω .

As before, this implies dα = γ ∧ ω for some 1-form γ. In particular,

d(α ∧ dα) = dα ∧ dα = γ ∧ ω ∧ γ ∧ ω = 0 .

(ii) Let α′ ∈ Ω1(M) be another form satisfying dω = α′∧ω. It follows
that (α′ − α) ∧ ω = 0, so α′ − α = fω for a smooth function f on M .
Hence

α′ ∧ dα′ = (α+ fω) ∧ dα′ = α ∧ dα′ + fω ∧ dα′ .

Note that ω ∧ dα′ = 0 by (i). Thus

α′ ∧ dα′ = α ∧ dα′
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= α ∧ d(α+ fω)

= α ∧ dα+ α ∧ d(fω)

= α ∧ dα− d(α ∧ fω) .

The last equation follows from d(α ∧ fω) = dα ∧ fω − α ∧ d(fω) and
part (i).

(iii) First we compute

d(hω) = dh ∧ ω + hdω

=
1
h
dh ∧ hω + α ∧ hω

= (d(log |h|) + α) ∧ hω .
So with α′′ = d(log |h|) + α we have gv(hω) = [α′′ ∧ dα′′]. But

α′′ ∧ dα′′ = (d(log |h|) + α) ∧ dα = α ∧ dα+ d(log |h| + dα) .

1.3 Constructions of foliations

In this section we list some standard constructions of foliations.

Product of foliations. Let (M,F) and (N,G) be two foliated man-
ifolds. Then there is the product foliation F × G on M × N , which
can be constructed as follows. If F is represented by a Haefliger cocycle
(Ui, si, γij) on M and G is represented by a Haefliger cocycle (Vk, s′k, γ

′
kl)

on N , then F × G is represented by the Haefliger cocycle

(Ui × Vk, si × s′k, γij × γ′kl)

on M×N . We have codim(F×G) = codimF+codimG and T (F×G) =
T (F) ⊕ T (G) ⊂ T (M) ⊕ T (N) = T (M ×N).

Pull-back of a foliation. Let f : N → M be a smooth map and F a
foliation of M of codimension q. Assume that f is transversal to F : this
means that f is transversal to all the leaves of F , i.e. for any x ∈ N we
have

(df)x(Tx(N)) + Tf(x)(F) = Tf(x)(M) .

Then we get a foliation f∗(F) of N as follows.
Suppose that F is given by the Haefliger cocycle (Ui, si, γij) on M .

Put Vi = f−1(Ui) and s′i = si ◦ f |Vi
. The maps s′i are submersions. To

see this, take any x ∈ Vi. We have to show that

(ds′i)x = (dsi)f(x) ◦(df)x
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is surjective. But (dsi)f(x) is surjective and trivial on Tf(x)(F), hence
it factors through the quotient w: Tf(x)(M) → Tf(x)(M)/Tf(x)(F) as a
surjective map. Also w ◦(df)x is surjective since f is transversal to the
leaves, and hence (ds′i)x is surjective as well. The foliation f∗(F) is now
given by the Haefliger cocycle (Vi, s′i, γij) on N . We have codim f∗(F) =
codimF and T (f∗(F)) = df−1(T (F)).

Transverse orientation cover of a foliation. For a foliated manifold
(M,F) put

toc(M,F) = {(x,O) |x ∈M, O orientation of Nx(F)} .

There is an obvious smooth structure on toc(M,F) such that the pro-
jection p: toc(M,F) → M is a twofold covering projection, called the
transverse orientation cover of the foliated manifold (M,F). The lift
toc(F) = p∗(F) of F to the transverse orientation cover is a transversely
orientable foliation.

Orientation cover of a foliation. For any foliated manifold (M,F)
there is also a smooth structure on

oc(M,F) = {(x,O) |x ∈M, O orientation of Tx(F)}

such that the projection p: toc(M,F) →M is a twofold covering projec-
tion. This covering space is called the orientation cover of the foliated
manifold (M,F). The lift oc(F) = p∗(F) of F to the orientation cover
is an orientable foliation.

Exercises 1.4 (1) Show that if F is a foliation of an orientable manifold
M then F is orientable if and only if F is transversely orientable.

(2) Find an example of non-orientable foliation of dimension 1 on the
torus. What is the orientation cover of that foliation?

(3) By using the (transverse) orientation cover, show that if a compact
manifold M carries a foliation of dimension 1 (or of codimension 1) then
the Euler characteristic of M is 0. In particular, the only closed surfaces
which admit a foliation of dimension 1 are the torus and the Klein bottle.

Quotient foliation. Let (M,F) be a foliated manifold, and let G be a
group acting freely and properly discontinuously by diffeomorphisms on
M , so that the quotient manifold M/G is Hausdorff. We assume that
the foliation F is invariant under this action of G, which means that any
diffeomorphism g: M → M in G maps leaves to leaves, or equivalently,
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that dg(T (F)) = T (F) for any g ∈ G. Then F induces a foliation F/G
of M/G in the following way.

First denote by p: M → M/G the quotient map, which is a covering
projection. Let (ϕi: Ui → R

n−q ×R
q) be a foliation atlas of F . We may

assume that p|Ui
is injective for any i, by replacing (ϕi) by a refinement

if necessary. Then

(ϕi ◦(p|Ui
)−1: p(Ui) −→ R

n−q × R
q)

is a foliation atlas representing F/G. If L is a leaf of F , then the isotropy
group GL = {g ∈ G | g(L) = L} of L acts smoothly on L, and the orbit
manifold L/GL can be identified with a leaf of F/G via the natural
immersion of L/GL into M/G. We have codim(F/G) = codim(F) and
T (F/G) = dp(T (F)). Observe that we already used this construction
in Example 1.1 (3).

Suspension of a diffeomorphism. This is another example of a quo-
tient foliation. Let f : F → F be a diffeomorphism of a manifold F .
The space R×F has the obvious foliation of dimension 1, by the leaves
R × {x}, x ∈ F . The smooth action of Z, defined on R × F by

(k, (t, x)) �→ (t+ k, fk(x)) ,

k ∈ Z, t ∈ R, x ∈ F , is properly discontinuous and it maps leaves to
leaves. Thus we obtain the quotient foliation Sf on the (Hausdorff)
manifold (R × F )/Z = R ×Z F . The foliated manifold (R ×Z F,Sf ) is
called the suspension of the diffeomorphism f .

Foliation associated to a Lie group action. We first recall some
terminology. For a smooth action G ×M → M , (g, x) �→ gx, of a Lie
group G on a smooth manifold M , the isotropy (or stabilizer) subgroup
at x ∈M is the subgroup Gx = {g ∈ G | gx = x}. It is a closed subgroup
of G, hence itself a Lie group. The orbit of x is Gx = {gx | g ∈ G}. It can
be viewed as a manifold injectively immersed into M , via the immersion
G/Gx →M with the image Gx.

We say that the action of G on M is foliated if dim(Gx) is a constant
function of x. In this case the connected components of the orbits of
the action are leaves of a foliation of M . As an integrable subbundle of
T (M), this foliation can simply be described in terms of the Lie algebra
g of G, namely as the image of the derivative of the action, which is a
map of vector bundles g ×M → T (M) of constant rank.

In the case G = R, a smooth R-action on M is called a flow on M .
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To such an action µ: R×M →M one can associate a vector field X on
M by

X(x) =
∂µ(t, x)
∂t

∣∣∣∣
t=0

.

A non-trivial flow µ is foliated precisely if its associated vector field X

vanishes nowhere; in this case the foliation with the orbits of µ is the
foliation given by the line field corresponding to X.

Exercise 1.5 Let R ⊂ M ×M be an equivalence relation on a mani-
fold M . By Godement’s theorem (see Serre (1965)), M/R is a smooth
manifold whenever R is a submanifold of M × M and pr2 : R → M

is a submersion. Formulate and prove a result which gives sufficient
conditions for a foliation F on M to induce a foliation on M/R.

Flat bundles. The following method of constructing foliations is re-
lated to the previous one of quotient foliations, and prepares the reader
for the treatment of Reeb stability in Section 2.3.

Let p: E → M be a (smooth) fibre bundle over a connected manifold
M . Then p is in particular a submersion, and thus defines the foliation
F(p) of E whose leaves are the connected components of the fibres of p,
i.e. the leaves are ‘vertical’.

Sometimes it is also possible to construct a foliation of E with ‘hori-
zontal’ leaves, so that p maps each leaf to M as a covering projection.
The following construction captures these examples.

Let G = π1(M,x) be the fundamental group of M at a base-point
x ∈ M , and let M̃ be the universal cover of M ; or, more generally,
suppose that G is any group acting freely and properly discontinuously
on a connected manifold M̃ such that M̃/G = M . We will write the
action of G on M̃ as a right action. Suppose also that there is a left
action by G on a manifold F . Now form the quotient space

E = M̃ ×G F ,

obtained from the product space M̃×F by identifying (yg, z) with (y, gz)
for any y ∈ M̃ , g ∈ G and z ∈ F . Thus E is the orbit space of M̃×F with
respect to a properly discontinuous action of G. It is also Hausdorff, so
it is a manifold. The projection pr1: M̃ ×F → M̃ induces a submersion
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π: E →M , so we have the following commutative diagram:

M̃ × F

pr1

E = M̃ ×G F
π

M̃ M

The map π : E → M has the structure of a fibre bundle over M with
fibre F .

Exercise 1.6 Show that the fibre bundles which can be obtained in this
way are exactly the fibre bundles with discrete structure group.

The foliation F(pr2) of M̃ × F , which is given by the submersion
pr2: M̃ ×F → F , is invariant under the action of G and hence we obtain
the quotient foliation F = F(pr2)/G on E. If z ∈ F and Gz ⊂ G is
the isotropy group at z of the action by G on F , then the leaf of E
obtained from the leaf M̃ × {z} is naturally diffeomorphic to M̃/Gz,
and π restricted to this leaf is the covering M̃/Gz →M of M .

The suspension of a diffeomorphism discussed above is a special case
of this construction.




